This page has been proofread, but needs to be validated.
HISTORY]
FORTIFICATION AND SIEGECRAFT
  691


of a first-class masonry obstacle by multiplication of wet ditches, and further to strengthen these obstacles by great quantities of palisading, for which purpose the timber of old ships was used. They also recognized the inherent weaknesses of wet ditches, as, for instance, that when frozen they no longer provide an obstacle; and they studied the means, not only of causing inundations, but also of arranging to empty as well as to fill the ditches at will. Simon Stevin was the leader in this work.

Nevertheless a Dutch school of design did come into existence at this time. The leaders, early in the 17th century, were Simon Stevin, Maurice and Henry of Nassau, Marollois and Freitag. The fortress of Coevorden, constructed by Prince Maurice, of which fig. 31 shows a front, is a well-known example of this, and the section shows clearly some typical features of the school.

Fig. 31.—Coevorden.

The elements of the plan are those of the early bastioned trace, but we find added both ravelins and lunettes, very regular in design. There is also the ditch at the foot of the glacis, and surrounding the rampart of the enceinte a continuous fausse-braie. This work, which partook of the nature of both boulevard and counterguard, served several purposes. It was desirable that the weight of the rampart should be drawn back a little from the edge of the ditch, and the fausse-braie filled what would otherwise have been dead ground at the foot of the rampart. It also afforded a grazing fire over the ditch, which was very important, and which the rampart supported by a plunging fire.

Fig. 32.—Coehoorn’s First System.

Coehoorn (q.v.), the contemporary and nearest rival to Vauban, was the greatest light of the Dutch school. Like Vauban he was distinguished as a fighting engineer, both in attack and defence; but in the attack he differed from him in Coehoorn. relying more on powerful artillery fire than systematic earthworks. He introduced the Coehoorn mortar. His “first system,” which was employed at Mannheim (fig. 32), is reproduced for the sake of comparison with the Coevorden front designed a hundred years earlier. Among other points will be noticed the combination of wet and dry ditches; the very broad main ditch with counterguard; the roomy keep of the ravelin; the expansion of the fausse-brais into an independent low parapet; and the powerful flanking fire in three tiers.

The “tenaille” system and the “polygonal” system which grew out of it are mainly identified with the German school. That school, says von Zastrow, does not, like that of France, represent the authoritative teaching of an German school. official establishment, but rather the general practice of the German engineers. It was founded on the principles of Dürer, Speckle and especially Rimpler, and much influenced in execution by Montalembert. “The German engineers desired a simple trace, a strong fortification with retrenchments and keeps, bomb-proof accommodation and an organization suitable for an offensive defence.”

These had always been the German principles. Already in the 16th century the Prussian defences of Kustrin, Spandau and Peitz had large bomb-proof casemates sufficient for a great part of the garrison. The same thing is seen in the defences of Giogau, Schweidnitz, &c., built by Frederick the Great. These works show various applications of the tenaille system. In 1776 Frederick became acquainted with the work of Montalembert, and his influence is seen in the casemates of Kosel.

Whether through the influence of Albert Dürer or not cannot be said, but while the bastion was being developed in France the tenaille and the accompanying casemates from the first found acceptance in Germany, and thence in eastern and northern Europe. De Groote, who wrote in 1618, produced a sort of tenaille system, and may have been the inspiration of Rimpler. Dillich (1640), Landsberg the elder (1648), Griendel d’Aach (1677), Werthmuller (1685) and others advocated both bastion and tenaille, sometimes in combination; the German bastion being usually distinguished by short faces and long flanks.

Rimpler, who was present at the siege of Candia (taken by the Turks in 1669) and died at that of Vienna in 1683, exercised a great influence. He had been struck by the weakness of the early Italian bastions at Candia, and published a book in 1673 called Fortification with Central Bastions, which was practically the polygonal trace. Zastrow thinks that Rimpler inspired Montalembert. He left unfortunately no designs to illustrate his ideas.

Fig. 33.

Landsberg the younger (1670–1746), a major-general in the Prussian service, who saw many sieges, also had a great influence. He appears to have been the first who frankly advocated the tenaille alone, chiefly on the ground that the flank, which was the most important part of the bastioned system, was also the weakest. Fig. 33 shows his system, published in 1712.

It was, however, ultimately a Frenchman, Marc René Montalembert (q.v.), who was the great apostle of the tenaille, though in his later years he leaned more to the polygonal trace. He objected to the bastioned trace on many grounds; principally that the bastion was a shell trap, that the flanks by Montal-embert and Carnot. crossing their fire lost the advantage of the full range of their weapons, and that the curtain was useless for defence. He took the view that the bastions with their ravelins constituted practically a tenaille trace, spoilt by the detachment of the ravelins and cramped by the presence of the curtains and flanks. His tenaille system consisted of redans, with salient angles of 60° or more, flanking each other at right angles; from which he gave to his system the name of “perpendicular fortification.”

Lazare Carnot (q.v.), the “Organizer of Victory,” was, in