Open main menu
This page has been proofread, but needs to be validated.
115
HYDROMECHANICS

HYDROMECHANICS (ὑδρομηχανικά), the science of the mechanics of water and fluids in general, including hydrostatics or the mathematical theory of fluids in equilibrium, and hydromechanics, the theory of fluids in motion. The practical application of hydromechanics forms the province of hydraulics (q.v.).

Historical.—The fundamental principles of hydrostatics were first given by Archimedes in his work Περὶ τῶν ὀχουμένων, or De iis quae vehuntur in humido, about 250 B.C., and were afterwards applied to experiments by Marino Ghetaldi (1566–1627) in his Promotus Archimedes (1603). Archimedes maintained that each particle of a fluid mass, when in equilibrium, is equally pressed in every direction; and he inquired into the conditions according to which a solid body floating in a fluid should assume and preserve a position of equilibrium.

In the Greek school at Alexandria, which flourished under the auspices of the Ptolemies, the first attempts were made at the construction of hydraulic machinery, and about 120 B.C. the fountain of compression, the siphon, and the forcing-pump were invented by Ctesibius and Hero. The siphon is a simple instrument; but the forcing-pump is a complicated invention, which could scarcely have been expected in the infancy of hydraulics. It was probably suggested to Ctesibius by the Egyptian Wheel or Noria, which was common at that time, and which was a kind of chain pump, consisting of a number of earthen pots carried round by a wheel. In some of these machines the pots have a valve in the bottom which enables them to descend without much resistance, and diminishes greatly the load upon the wheel; and, if we suppose that this valve was introduced so early as the time of Ctesibius, it is not difficult to perceive how such a machine might have led to the invention of the forcing-pump.

Notwithstanding these inventions of the Alexandrian school, its attention does not seem to have been directed to the motion of fluids; and the first attempt to investigate this subject was made by Sextus Julius Frontinus, inspector of the public fountains at Rome in the reigns of Nerva and Trajan. In his work De aquaeductibus urbis Romae commentarius, he considers the methods which were at that time employed for ascertaining the quantity of water discharged from ajutages, and the mode of distributing the waters of an aqueduct or a fountain. He remarked that the flow of water from an orifice depends not only on the magnitude of the orifice itself, but also on the height of the water in the reservoir; and that a pipe employed to carry off a portion of water from an aqueduct should, as circumstances required, have a position more or less inclined to the original direction of the current. But as he was unacquainted with the law of the velocities of running water as depending upon the depth of the orifice, the want of precision which appears in his results is not surprising.

Benedetto Castelli (1577–1644), and Evangelista Torricelli (1608–1647), two of the disciples of Galileo, applied the discoveries of their master to the science of hydrodynamics. In 1628 Castelli published a small work, Della misura dell’ acque correnti, in which he satisfactorily explained several phenomena in the motion of fluids in rivers and canals; but he committed a great paralogism in supposing the velocity of the water proportional to the depth of the orifice below the surface of the vessel. Torricelli, observing that in a jet where the water rushed through a small ajutage it rose to nearly the same height with the reservoir from which it was supplied, imagined that it ought to move with the same velocity as if it had fallen through that height by the force of gravity, and hence he deduced the proposition that the velocities of liquids are as the square root of the head, apart from the resistance of the air and the friction of the orifice. This theorem was published in 1643, at the end of his treatise De motu gravium projectorum, and it was confirmed by the experiments of Raffaello Magiotti on the quantities of water discharged from different ajutages under different pressures (1648).

In the hands of Blaise Pascal (1623–1662) hydrostatics assumed the dignity of a science, and in a treatise on the equilibrium of liquids (Sur l’équilibre des liqueurs), found among his manuscripts after his death and published in 1663, the laws of the equilibrium of liquids were demonstrated in the most simple manner, and amply confirmed by experiments.

The theorem of Torricelli was employed by many succeeding writers, but particularly by Edmé Mariotte (1620–1684), whose Traité du mouvement des eaux, published after his death in the year 1686, is founded on a great variety of well-conducted experiments on the motion of fluids, performed at Versailles and Chantilly. In the discussion of some points he committed considerable mistakes. Others he treated very superficially, and in none of his experiments apparently did he attend to the diminution of efflux arising from the contraction of the liquid vein, when the orifice is merely a perforation in a thin plate; but he appears to have been the first who attempted to ascribe the discrepancy between theory and experiment to the retardation of the water’s velocity through friction. His contemporary Domenico Guglielmini (1655–1710), who was inspector of the rivers and canals at Bologna, had ascribed this diminution of velocity in rivers to transverse motions arising from inequalities in their bottom. But as Mariotte observed similar obstructions even in glass pipes where no transverse currents could exist, the cause assigned by Guglielmini seemed destitute of foundation. The French philosopher, therefore, regarded these obstructions as the effects of friction. He supposed that the filaments of water which graze along the sides of the pipe lose a portion of their velocity; that the contiguous filaments, having on this account a greater velocity, rub upon the former, and suffer a diminution of their celerity; and that the other filaments are affected with similar retardations proportional to their distance from the axis of the pipe. In this way the medium velocity of the current may be diminished, and consequently the quantity of water discharged in a given time must, from the effects of friction, be considerably less than that which is computed from theory.

The effects of friction and viscosity in diminishing the velocity of running water were noticed in the Principia of Sir Isaac Newton, who threw much light upon several branches of hydromechanics. At a time when the Cartesian system of vortices universally prevailed, he found it necessary to investigate that hypothesis, and in the course of his investigations he showed that the velocity of any stratum of the vortex is an arithmetical mean between the velocities of the strata which enclose it; and from this it evidently follows that the velocity of a filament of water moving in a pipe is an arithmetical mean between the velocities of the filaments which surround it. Taking advantage of these results, Henri Pitot (1695–1771) afterwards showed that the retardations arising from friction are inversely as the diameters of the pipes in which the fluid moves. The attention of Newton was also directed to the discharge of water from orifices in the bottom of vessels. He supposed a cylindrical vessel full of water to be perforated in its bottom with a small hole by which the water escaped, and the vessel to be supplied with water in such a manner that it always remained full at the same height. He then supposed this cylindrical column of water to be divided into two parts,—the first, which he called the “cataract,” being an hyperboloid generated by the revolution of an hyperbola of the fifth degree around the axis of the cylinder which should pass through the orifice, and the second the remainder of the water in the cylindrical vessel. He considered the horizontal strata of this hyperboloid as always in motion, while the remainder of the water was in a state of rest, and imagined that there was a kind of cataract in the middle of the fluid. When the results of this theory were compared with the quantity of water actually discharged, Newton concluded that the velocity with which the water issued from the orifice was equal to that which a falling body would receive by descending through half the height of water in the reservoir. This conclusion, however, is absolutely irreconcilable with the known fact that jets of water rise nearly to the same height as their reservoirs, and Newton seems to have been aware of this objection. Accordingly, in the second edition of his Principia, which appeared in 1713, he reconsidered his theory. He had discovered a contraction in the vein of fluid (vena contracta) which issued from the orifice, and found that, at the distance of about a diameter of the aperture, the section of the vein was contracted in the subduplicate ratio of two to one. He regarded, therefore, the section of the contracted vein as the true orifice from which the discharge of water ought to be deduced, and the velocity of the effluent water as due to the whole height of water in the reservoir; and by this means his theory became more conformable to the results of experience, though still open to serious objections. Newton was also the first to investigate the difficult subject of the motion of waves (q.v.).

In 1738 Daniel Bernoulli (1700–1782) published his Hydrodynamica seu de viribus et motibus fluidorum commentarii. His theory of the motion of fluids, the germ of which was first published in his memoir entitled Theoria nova de motu aquarum per canales quocunque fluentes, communicated to the Academy of St Petersburg as early as 1726, was founded on two suppositions, which appeared to him conformable to experience. He supposed that the surface of the fluid, contained in a vessel which is emptying itself by an orifice, remains always horizontal; and, if the fluid mass is conceived to be divided into an infinite number of horizontal strata of the same bulk, that these strata remain contiguous to each other, and that all their points descend vertically, with velocities inversely proportional to their breadth, or to the horizontal sections of the reservoir. In order to determine the motion of each stratum, he employed the principle of the conservatio virium vivarum, and obtained very elegant solutions. But in the absence of a general demonstration of that principle, his results did not command the confidence which they would otherwise have deserved, and it became desirable to have a theory more certain, and depending solely on the fundamental laws of mechanics. Colin Maclaurin (1698–1746) and John Bernoulli (1667–1748), who were of this opinion, resolved the problem by more direct methods, the one in his Fluxions, published in 1742, and the other in his Hydraulica nunc primum detecta, et demonstrata directe ex fundamentis pure mechanicis, which forms the fourth volume of his works. The method employed by Maclaurin has been thought not sufficiently rigorous; and that of John Bernoulli is, in the opinion of Lagrange, defective in clearness and precision. The theory of Daniel Bernoulli was opposed also by Jean le Rond d’Alembert. When generalizing the theory of pendulums of Jacob Bernoulli (1654–1705) he discovered a principle of dynamics so simple and general that it reduced the laws of the motions of bodies to that of their equilibrium. He applied this