Open main menu
This page has been proofread, but needs to be validated.
AND MORPHOLOGY]
145
HYDROMEDUSAE


in a state of maturity, and have ocelli; the female medusae remain attached and have no sense organs.

EB1911 Hydromedusae - Structure of the Gonophore.jpg

Modified from Weismann, Entstehung der Sexualzellen bei den Hydromedusen.

Fig. 41.—Diagrams of the Structure of the Gonophores of various Hydromedusae, based on the figures of G. J. Allman and A. Weismann.

A, “Meconidium” of Gonothyraea.
B, Type of Tubularia.
C, Type of Garveia, &c.
D, Type of Plumularia, Agalma, &c.
E, Type of Coryne, Forskalia, &c.
F, G, H,  Sporosacs.
F, With simple spadix.
G, With spadix prolonged (Eudendrium).
H, With spadix branched (Cordylophora).
s.c, Sub-umbral cavity.
t, Tentacles.
c.c, Circular canal,
g, Gonads.
sp, Spadix.
e.l, Endoderm-lamella.
ex, Ex-umbral ectoderm.
ect, Ectotheca.

The gonophores of different hydroids differ greatly in structure from one another, and form a series showing degeneration of the medusa-individual, which is gradually stripped, as it were, of its characteristic features of medusan organization and finally reduced to the simplest structure. A very early stage in the degeneration is well exemplified by the so-called “meconidium” of Gonothyraea (fig. 41, A). Here the medusoid, attached by the centre of its ex-umbral surface, has lost its velum and sub-umbral muscles, its sense organs and mouth, though still retaining rudimentary tentacles. The gonads (g) are produced on the manubrium, which has a hollow endodermal axis, termed the spadix (sp.), in open communication with the coenosarc of the polyp-colony and serving for the nutrition of the generative cells. A very similar condition is seen in Tubularia (fig. 41, B), where, however, the tentacles have quite disappeared, and the circular rim formed by the margin of the umbrella has nearly closed over the manubrium leaving only a small aperture through which the embryos emerge. The next step is illustrated by the female gonophores of Cladocoryne, where the radial and ring-canals have become obliterated by coalescence of their walls, so that the entire endoderm of the umbrella is in the condition of the endoderm-lamella. Next the opening of the umbrella closes up completely and disappears, so that the sub-umbral cavity forms a closed space surrounding the manubrium, on which the gonads are developed; such a condition is seen in the male gonophore of Cladocoryne and in Garveia (fig. 41, C), where, however, there is a further complication in the form of an adventitious envelope or ectotheca (ect.) split off from the gonophore as a protective covering, and not present in Cladocoryne. The sub-umbral cavity (s.c.) functions as a brood-space for the developing embryos, which are set free by rupture of the wall. It is evident that the outer envelope of the gonophore represents the ex-umbral ectoderm (ex.), and that the inner ectoderm lining the cavity represents the sub-umbral ectoderm of the free medusa. The next step is the gradual obliteration of the sub-umbral cavity (s.c.) by disappearance of which the sub-umbral ectoderm comes into contact with the ectoderm of the manubrium. Such a type is found in Plumularia and also in Agalma (fig. 41, D); centrally is seen the spadix (sp.), bearing the generative cells (g), and external to these (1) a layer of ectoderm representing the epithelium of the manubrium; (2) the layer of sub-umbral ectoderm; (3) the endoderm-lamella (e.l.); (4) the ex-umbral ectoderm (ex.); and (5) there may or may not be present also an ectotheca. Thus the gonads are covered over by at least four layers of epithelium, and since these are unnecessary, presenting merely obstacles to the dehiscence of the gonads, they gradually undergo reduction. The sub-umbral ectoderm and that covering the manubrium undergo concrescence to form a single layer (fig. 41, E), which finally disappears altogether, and the endoderm-lamella disappears. The gonophore is now reduced to its simplest condition, known as the sporosac (fig. 41, F, G, H), and consists of the spadix bearing the gonads covered by a single layer of ectoderm (ex.), with or without the addition of an ectotheca. It cannot be too strongly emphasized, however, that the sporosac should not be compared simply with the manubrium of the medusa, as is sometimes done. The endodermal spadix (sp.) of the sporosac represents the endoderm of the manubrium; the ectodermal lining of the sporosac (ex.) represents the ex-umbral ectoderm of the medusa; and the intervening layers, together with the sub-umbral cavity, have disappeared. The spadix, as the organ of nutrition for the gonads, may be developed in various ways, being simple (fig. 41, F) or branched (fig. 41, H); in Eudendrium (fig. 41, G) it curls round the single large ovum.

EB1911 Hydromedusae - Gonophores of Dicoryne conferta.jpg

After Allman, Gymnoblastic Hydroids, by permission of the Council of the Ray Society.

Fig. 42.—Gonophores of Dicoryne conferta.
A, A male gonophore still enclosed in its ectotheca.
B and C,  Two views of a female gonophore after liberation.
t, Tentacles.
ov, Ova, two carried on each female gonophore.
sp, Testis.

The hydroid Dicoryne is remarkable for the possession of gonophores, which are ciliate and become detached and swim away by means of their cilia. Each such sporosac has two long tentacle-like processes thickly ciliated.

It has been maintained that the gonads of Hydra represent sporosacs or gonophores greatly reduced, with the last traces of medusoid structure completely obliterated. There is, however, no evidence whatever for this, the gonads of Hydra being purely ectodermal structures, while all medusoid gonophores have an endodermal portion. Hydra is, moreover, bisexual, in contrast with what is known of hydroid colonies.

In some Leptomedusae the gonads are formed on the radial canals and form protruding masses resembling sporosacs superficially, but not in structure. Allman, however, regarded this type of gonad as equivalent to a sporosac, and considered the medusa bearing them as a non-sexual organism, a “blastocheme” as he termed it, producing by budding medusoid gonophores. As medusae are known to bud medusae from the radial canals there is nothing impossible in Allman’s theory, but it cannot be said to have received satisfactory proof.

Reproduction and Ontogeny of the Hydromedusae.

Nearly every possible method of reproduction occurs amongst the Hydromedusae. In classifying methods of generation it is usual to make use of the sexual or non-sexual nature of the reproduction as a primary difference, but a more scientific classification is afforded by the distinction between tissue-cells