This page has been proofread, but needs to be validated.
356
MAGNETISM, TERRESTRIAL
  


The usual method of conveying information as to the value of the declination at different parts of the earth’s surface is to draw curves on a map—the so-called isogonals—such that at all points on any one curve the declination at a given specified epoch has the same value. The information being of special use to sailors, the preparation of magnetic charts has been largely the work of naval authorities—more especially of the hydrographic department of the British admiralty. The object of the admiralty world charts—four of which are reproduced here, on a reduced scale, by the kind permission of the Hydrographer—is rather to show the general features boldly than to indicate minute details. Apart from the immediate necessities of the case, this is a counsel of prudence. The observations used have mostly been taken at dates considerably anterior to that to which the chart is intended to apply. What the sailor wants is the declination now or for the next few years, not what it was five, ten or twenty years ago. Reliable secular change data, for reasons already indicated, are mainly obtainable from fixed observatories, and there are enormous areas outside of Europe where no such observatories exist. Again, as we shall see presently, the rate of the secular change sometimes alters greatly in the course of a comparatively few years. Thus, even when the observations themselves are thoroughly reliable, the prognostication made for a future date by even the most experienced of chart makers may be occasionally somewhat wide of the mark. Fig. 1 is a reduced copy of the British admiralty declination chart for the epoch 1907. It shows the isogonals between 70° N. and 65° S. latitude. Beyond the limits of this chart, the number of exact measurements of declination is somewhat limited, but the general nature of the phenomena is easily inferred. The geographical and the magnetic poles—where the dipping needle is vertical—are fundamental points. The north magnetic pole is situated in North America near the edge of the chart. We have no reason to suppose that the magnetic pole is really a fixed point, but for our present purpose we may regard it as such. Let us draw an imaginary circle round it, and let us travel round the circle in the direction, west, north, east, south, starting from a point where the north pole of a magnet (i.e. the pole which in Europe or the United States points to the north) is directed exactly towards the astronomical north. The point we start from is to the geographical south of the magnetic pole. As we go round the circle the needle keeps directed to the magnetic pole, and so points first slightly to the east of geographical north, then more and more to the east, then directly east, then to south of east, then to due south, to west of south, to west, to north-west, and finally when we get round to our original position due north once more. Thus, during our course round the circle the needle will have pointed in all possible directions. In other words, isogonals answering to all possible values of the declination have their origin in the north magnetic pole. The same remark applies of course to the south magnetic pole.

Fig. 1.—Isogonals, or lines of equal magnetic declination.

Now, suppose ourselves at the north geographical pole of the earth. Neglecting as before diurnal variation and similar temporary changes, and assuming no abnormal local disturbance, the compass needle at and very close to this pole will occupy a fixed direction relative to the ground underneath. Let us draw on the ground through the pole a straight line parallel to the direction taken there by the compass needle, and let us carry a compass needle round a small circle whose centre is the pole. At all points on the circle the positions of the needle will be parallel; but whereas the north pole of the magnet will point exactly towards the centre of the circle at one of the points where the straight line drawn on the ground cuts the circumference, it will at the opposite end of the diameter point exactly away from the centre. The former part is clearly on the isogonal where the declination is 0°, the latter on the isogonal where it is 180°. Isogonals will thus radiate out from the north geographical pole (and similarly of course from the south geographical pole) in all directions. If we travel along an isogonal, starting from the north magnetic pole, our course will generally take us, often very circuitously, to the north geographical pole. If, for example, we select the isogonal of 10° E., we at first travel nearly south, but then more and more westerly, then north-westerly across the north-east of Asia; the direction then gets less northerly, and makes a dip to the south before finally making for the north geographical pole. It is possible, however, according to the chart, to travel direct from the north magnetic to the south geographical pole, provided we select an isogonal answering to a small westerly or easterly declination (from about 19° W. to 7° E.).

Special interest attaches to the isogonals answering to declination 0°. These are termed agonic lines, but sailors often call them lines of no variation, the term variation having at one time been in common use in the sense of declination. If we start from the north magnetic pole the agonic line takes us across Canada, the United States and South America in a fairly straight course to the south geographical pole. A curve continuous with this can be drawn from the south geographical to the south magnetic pole at every point of which the needle points in the geographical meridian; but here the north pole of the needle is pointing south, not north, so that this portion of curve is really an isogonal of 180°. In continuation of this there emanates from the south magnetic pole a second isogonal of 0°, or agonic line, which traverses Australia, Arabia and Russia, and takes us to the north geographical pole. Finally, we have an isogonal of 180°, continuous with this second isogonal of 0° which takes us to the north magnetic pole, from which we started. Throughout the whole area included within these isogonals of 0° and 180°—excluding locally disturbed areas—the declination is westerly; outside this area the declination is in general easterly. There is, however, as shown in the chart, an isogonal of 0° enclosing an area in eastern Asia inside which the declination is westerly though small.

§ 7. Fig. 2 is a reduced copy of the admiralty chart of inclination or dip for the epoch 1907. The places where the dip has the same value lie on curves called isoclinals. The dip is northerly (north pole dips) or southerly (south pole dips) according as the place is north or south of the isoclinal of 0°. At places actually on this isoclinal the dipping needle is horizontal. The isoclinal of 0° is nowhere very far from the geographical equator, but lies to the north of it in Asia and Africa, and to the south of it in South America. As we travel north from the isoclinal of 0° along the meridian containing the magnetic pole the dipping needle’s north pole dips more and more, until when we reach the magnetic pole the needle is vertical. Going still farther north, we have the dip diminishing. The northerly inclination is considerably less in Europe than in the same latitudes of North America; and correspondingly