This page has been proofread, but needs to be validated.
PLANTS]
REPRODUCTION
127

female cell: the latter possibility is to some extent realized in those Algae (e.g. Ulothrix, Ectocarpus) in which the sexual cells (isogametes), if they fail to conjugate, germinate independently as gonidia, giving rise to gametophytes.

The more familiar mode is that of vegetative budding, as already mentioned. When a “viviparous” fern or Phanerogam reproduces itself by a bud or a bulbil, both spore-formation and the sexual act are passed over: sporophyte springs from sporophyte. Remarkable cases of this have been observed in certain Phanerogams (Coelebogyne ilicifolia, Funkia ovata, Nothoscordum fragrans, Citrus, sp. of Euonymus, Opuntia vulgaris) in the ovule of which adventitious embryos are formed by budding from cells of the nucellus: with the exception of Coelebogyne, it appears that this only takes place after the oosphere has been fertilized. In other plants it is the gametophyte that reproduces itself by means of gemmae or bulbils, as commonly in the Bryophyta, the prothallia of ferns, &c.

The abnormalities described are all traceable to reproductive degeneration; the final result of which is that true reproduction is replaced more or less completely by vegetative propagation. It may be inquired whether degeneration may have proceeded so far in any plant of sufficiently high organization to present spore-formation, or sexual reproduction, or both, as to cause the plant to reproduce itself entirely and exclusively by the vegetative method. The only such case that suggests itself is that of Caulerpa and possibly some other Siphonaceous Green Algae. In this plant no special reproductive organs have yet been discovered, and it certainly reproduces itself by the breaking off of portions of the body which become complete plants: but it is quite possible that reproductive organs may yet be discovered.

V. Physiology of Reproduction.

The reproductive capacity of plants, as of animals, depends upon the fact that the whole or part of the protoplasm of the individual can develop into one or more new organisms in one or other of several possible ways. Thus, in the case of unicellular plants, the whole of the protoplasm of the parent gives rise, whether by simple division or otherwise, to one or more new plants. Reproduction necessarily closes the life of the individual: here, as August Weismann long ago pointed out, there is no natural death, for the whole of the protoplasm of the parent continues to live in the progeny. In multicellular plants, on the contrary, the reproductive function is mainly discharged by certain parts of the body, the reproductive organs, the remainder of the body being essentially vegetative—that is, concerned with the maintenance of the individual. In these plants it is only a part of the protoplasm that continues to live in their progeny; the remainder, the vegetative part, eventually dies. It is therefore possible to distinguish in them, on the one hand, the essentially reproductive protoplasm, which may be designated by Weismann's term germ-plasm, though without necessarily adopting all that his use of it implies, and the essentially vegetative, mortal protoplasm, the somatoplasm, on the other. In the unicellular plant no such distinction can be drawn, for the whole of the protoplasm is concerned in reproduction. But even in the most highly organized multicellular plant this distinction is not absolute: for, as already explained, plants can, in general, be propagated by the isolation of almost any part of the body, that is vegetatively, and this implies the presence of germ-plasm elsewhere than in the special reproductive organs.

If the attempt be made to distinguish between the organs of vegetative propagation and those of true reproduction, the nearest approach would be the statement that the former contain both germ-plasm and somatoplasm, whereas the latter, or at least the reproductive cells, consist entirely of germ-plasm.

The question now arises as to the exact seat of the germ-plasm, and the answer is to be looked for in the results of the numerous researches into the structure and development of the reproductive cells that form so large a part of the biological work of recent years. The various facts already mentioned suffice to prove that the nucleus plays the leading part in the reproductive processes of whatever kind: the general conclusion is justified that no reproductive cell can develop into a new organism if deprived of its nucleus. It may be inferred that the nucleus either actually contains the germ-plasm, or that it controls and directs the activities of the germ-plasm present in the cell. It is not improbable that both these inferences may be true. At any rate there is no sufficient ground for excluding the co-operation of the cytoplasm, especially of that part of it distinguished as kinoplasm, in the reproductive processes.

Pursuing the ascertained facts with regard to the nucleus, it is established that the part of it especially concerned is the linin-network which consists of the chromosomes. The behaviour, as already described, of the chromosomes in the various reproductive processes has led to the conclusion that the hereditary characters of the parent or parents are transmitted in and by them to the progeny: that they constitute, in fact, the material basis of heredity (see Heredity). They can hardly, however, be regarded as the ultimate structural units, for the simple reason that their number is far too small in relation to the transmissible characters. It has been suggested (Farmer) that the chromomeres are the units, but the number of these would seem to be hardly sufficient. It seems necessary to fall back upon hypothetical ultimate particles, as suggested by Darwin, de Vries and Weismann, which may be generally termed pangens. The chromomeres may be regarded as aggregates of such particles, the “ids” of Weismann.

The foregoing considerations make it possible to attempt an explanation of the various reproductive processes.

Vegetative Propagation.—It is easily intelligible that the two individuals produced by the division of a unicellular plant should resemble the parent and each other; for, the division of the parent-nucleus being homotypic, the chromosomes which go to constitute the nucleus of each daughter-cell are alike both in number and in nature, and exactly repeat the constitution of the parent-nucleus.

In the more complicated cases of propagation by bulbils, cuttings, &c., the development of the new individual, or of the missing parts of the individual (roots, &c.), may be ascribed to the presence in the bulbil or cutting of the necessary pangens.

Reproduction by Gonidia.—In this case a single cell gives rise to a complete new organism resembling the parent. The inference is that the gonidium is a portion of the parental germ-plasm, in which all the necessary pangens have been accumulated.

Reproduction by Spores.—In this case, also, an entire organism is developed from a single cell, but with this peculiarity that the resulting organism is unlike that which bore the spore, a peculiarity which has not yet been explained. It has been already stated that the development of true spores involves meiosis, and this process is no doubt related to the behaviour of the spore on germination; but the nature of this relation remains obscure. It might be assumed that, as the result of meiosis, the nucleus of the spore receives only gametophytic pangens. But the assumption is rendered impossible by the fact that the spore gives rise to a sexual organism, the reproductive cells of which, after the sexual act, produce a sporophyte. Clearly sporophytic pangens must be present as well in the spore as in the gametophyte and in its sexual cells. It can only be surmised that they exist there in a latent condition, dominated, as it were, by the gametophytic pangens.

Sexual Reproduction.—Here, again, as yet unanswered questions present themselves. The essence of a sexual cell is that it cannot give rise by itself to a new organism, it is only truly reproductive after the sexual act: this peculiarity is just what constitutes its sexuality. Minute investigation has not yet detected any essential structural difference between a sexual cell and a spore; on the contrary, the results so far obtained have established that they essentially agree in being post-meiotic (haploid). Why then do they differ so fundamentally in their reproductive capacities? Again, sexual cells differ in sex; but there are as yet no facts to demonstrate any essential structural difference between male