This page has been proofread, but needs to be validated.
128
REPRODUCTION

and female cells. What is known about them tends to prove their structural similarity rather than their difference. But it is possible that their difference may be chemical, and so not to be detected by the microscope.

The normal sexual act has been described as consisting in the fusion, first, of two cells, then of their nuclei, and finally, often after a long interval, of their chromosomes and of their chromomeres in meiosis. What causes determined these fusions is a question that is only partly answered. It is known in certain cases (e.g. ferns and mosses) that the male cell is attracted to the female by chemical substances secreted for the purpose by the female organ; that it is a case of chemiotaxis. Probably this is more common than experiment has yet shown it to be. It is quite conceivable that the consequent cell-fusion, as also the subsequent fusions of nuclei and of chromosomes, are likewise cases of chemiotaxis, depending upon chemical differences between the fusing structures.

The sexual process can only take place between cells which are related to each other in a certain degree (see Hybridism); that is, it depends upon sexual affinity. It is the general rule that it takes place between cells derived from different individuals of the same species; that is, cross-fertilization is the rule. This is necessarily the case when the male and female organs are developed upon different individuals, when the plant is said to be dioecious. When both kinds of organs are developed upon the same individual (monoecious), self-fertilization may and often does occur; but it is commonly hindered by various special arrangements, of which dichogamy is the most common; that is, that the male and female organs are not mature at the same time. But though these arrangements favour cross-fertilization, they do not absolutely prevent self-fertilization. In some cases, cleistogamic flowers, for instance, self-fertilization alone is possible (see Angiosperms). The general conclusion is that though cross-fertilization is the more advantageous form of sexual reproduction, still self-fertilization is more advantageous to the species than no fertilization at all.

In considering this subject, it must be borne in mind that the terms used have different meanings when applied to certain heterosporous plants from those which they convey when applied to isosporus plants. In the latter cases their meaning is direct and simple: in the former it is indirect and somewhat complicated. In heterosporous plants generally the actual sexual organs are never borne upon the same individual, there is always necessarily a male and a female gametophyte; so that, strictly speaking, self-fertilization is impossible. But in the Phanerogams, where there isaprocess preliminary to fertilization, that of pollination, which is unknown in other plants, the terms and the conceptions expressed by them are applied, not to the real sexual organs, but to the spores. Thus a dioecious Phanerogam is one in which the microspores are developed by one individual, the megaspores by another; and again, self-fertilization is said to occur when the microspores (pollen) fall upon the stigma of the same Bower (see Angiosperms); but this is really only self-pollination.

To return to the sexual process itself. Whatever its nature, two sets of results follow upon the sexual act—(1) a zygote is formed, which is capable of developing into a new organism, from two cells, neither of which could so develop; (2) the hereditary sporophytic characters of the two parents are possessed by the organism so developed. These two results will now be considered in some detail.

(1) The Relation between the Sexual Act and Reproductive Capacity—In the early days of the discovery of the sexual process, it was thought that the capacity for development imparted to the female cell was to be attributed to the doubling of its nuclear substance by the fusion with the male cell. Reproductive capacity does not, however, depend upon the bulk of the nuclear substance, for a spore, like an unfertilized female cell, contains but the x number of chromosomes, and yet it can give rise to a new organism. Again, it has been observed (Winkler) that a non-nucleated fragment of an oosphere of Cystoseira (Fucaceae) can be “fertilized” by a spermatozoid and will then grow and divide to form a small embryo, though it necessarily contains only the x number of chromosomes. From this it would appear that some stimulating influence had been exerted by the male cell, and it is probably in this direction that the desired explanation is to be sought. Some important confirmatory facts have been recorded with regard to certain animals (sea-urchins). It has been observed (Loeb) that treatment with magnesium chloride will cause the ova to grow and segment; and similar results have been obtained (Winkler) by treating the ova with a watery extract of the male cells. Hence it may be inferred that the male cell carries with it, either in its cytoplasm (kinoplasm), or in its nucleus, extractable substances, perhaps of the nature of enzymes, that stimulate the female cell to growth.

It may be mentioned that the stimulating effect of fertilization is not necessarily confined to the female cell; very frequently adjacent tissues are stimulated to growth and structural change. In a Phanerogam, for instance, the whole ovule grows and develops into the seed: the development of endosperm in the embryo-sac is initiated by another nuclear fusion, taking place between the second male nucleus and the endosperm-nucleus: the ovary, too, grows to form the fruit, which may be dry and hard or more or less succulent: the stimulating effect may extend to other parts of the flower; to the perianth, as in the mulberry; to the receptacle, as in the strawberry and the apple; or even beyond the flower to the axis of the inflorescence, as in the fig and the pine-apple. Analogous developments in other groups are the calyptra of the Bryophyta, the cystocarps of the Red Algae, the ascocarps of the Ascomycetes, the aecidia of the Uredineae, &c.

(2) The Relation of the Sexual Act to Heredity.—The product of the sexual act is essentially a diploid cell, the zygote, which actually is or gives rise to a sporophyte. The sexual heredity of plants consequently presents the peculiar feature that the organism resulting from the sexual act is quite unlike its immediate parents, which are both gametophytes. But it is clear that the sporophytic characters must have persisted, though in a latent condition, through the gametophyte, to manifest themselves in the organism developed from the zygote.

The real question at issue is as to the exact means by which these characters are transmitted and combined in the sexual act. There is a considerable amount of evidence that the hereditary characters are associated with the chromomeres, and that it is rather their linin-constituent than their chromatin which is functional (Strasburger): that they constitute, in fact, the material basis of heredity. From this point of view it is probable that the last phase of the sexual act, the fusion of the chromomeres in meiosis, represents the combination of the two sets of parental characters. What exactly happens in the pseudo-chromosome stage is not known; at any rate this stage offers an opportunity for a complete redistribution of the substance of the chromomeres—in other words, of the parental pangens. It is a striking fact that, in the subsequent nuclear division, the distribution of the chromosomes derived from the male and female parents (when they can be distinguished) seems to be a matter of indifference: they are not equally distributed to the two daughter-nuclei. The explanation would appear to be this, that they are not any longer male and female as they were before meiotic fusion; and that it is because they now contain both male and female nuclear substance that their equal distribution to the daughter-nuclei is unimportant.

The nature of this redistribution of the substance of the chromomeres is still under discussion. Some regard it as essentially a chemical process, resulting in the formation of new compounds; others consider it to be rather a physical process, a new material system being formed in the rearrangement of the pangens; here it must be left for the present.

The various ways in which the parental characters manifest themselves in the progeny are fully dealt with in the articles Heredity, Hybridism, Mendelism. It will suffice to say that the progeny, though maintaining generally the characters of the species, do not necessarily exactly resemble either of the parents, nor do they necessarily present exactly intermediate characters: