Page:Impact of Climate Change in 2030 Russia (2009).pdf/46

This page has been proofread, but needs to be validated.

This paper does not represent US Government views.

well as frequency of wet days) in good agreement with the observations (Global Precipitation Climatology Project, Huffman et al., 2001).

Three-member ensembles of baseline simulations (1961–1990) from an RCM (PRECIS) at 50-kilometer resolution have confirmed that significant improvements in the representation of regional processes over South Asia can be achieved (Rupa Kumar et al., 2006). For example, the steep gradients in monsoon precipitation with a maximum along the western coast of India are well represented in PRECIS.

East Asia

Simulated temperatures in most MMD models are too low in all seasons over East Asia; the mean cold bias is largest in winter and smallest in summer. Zhou and Yu (2006) show that over China, the models perform reasonably in simulating the dominant variations of the mean temperature over China, but not the spatial distributions. The annual precipitation over East Asia exceeds the observed estimates in almost all models and the rain band in the mid-latitudes is shifted northward in seasons other than summer. This bias in the placement of the rains in central China also occurred in earlier models (e.g., Zhou and Li, 2002; Gao et al., 2004). In winter, the area-mean precipitation is overestimated by more than 50 percent on average due to strengthening of the rain band associated with extratropical systems over South China. The bias and inter-model differences in precipitation are smallest in summer but the northward shift of this rain band results in large discrepancies in summer rainfall distribution over Korea, Japan and adjacent seas.

Kusunoki et al. (2006) find that the simulation of the Meiyu-Changma-Baiu rains in the East Asian monsoon is improved substantially with increasing horizontal resolution. Confirming the importance of resolution, RCMs simulate more realistic climatic characteristics over East Asia than AOGCMs, whether driven by re-analyses or by AOGCMs (e.g., Ding et al., 2003; Oh et al., 2004; Fu et al., 2005; Zhang et al., 2005a, Ding et al., 2006; Sasaki et al., 2006b). Several studies reproduce the fine-scale climatology of small areas using a multiply nested RCM (Im et al., 2006) and a very-high resolution (5 kilometers) RCM (Yasunaga et al., 2006). Gao et al. (2006b) report that simulated East Asia large-scale precipitation patterns are significantly affected by resolution, particularly during the mid- to late-monsoon months, when smaller-scale convective processes dominate.

Southeast Asia

The broad-scale spatial distribution of temperature and precipitation in DJF and JJA averaged across the MMD models compares well with observations. Rajendran et al. (2004) examine the simulation of current climate in the MRI coupled model. Large-scale features were well simulated, but errors in the timing of peak rainfall over Indochina were considered a major shortcoming. Collier et al. (2004) assess the performance of the CCSM3 model in simulating tropical precipitation forced by observed SST. Simulation was good over the Maritime continent compared to the simulation for other tropical regions. B. Wang et al. (2004) assess the ability of 11 AGCMs in the Asian-Australian monsoon region simulation forced with observed SST variations. They found that the models’ ability to simulate observed interannual rainfall variations was poorest in the Southeast Asian portion of the domain. Since current AOGCMs continue to have some

42

This paper does not represent US Government views.