Page:Impact of Climate Change in 2030 Russia (2009).pdf/47

This page has been proofread, but needs to be validated.

This paper does not represent US Government views.

significant shortcomings in representing ENSO variability, the difficulty of projecting changes in ENSO-related rainfall in this region is compounded.

Rainfall simulation across the region at finer scales has been examined in some studies. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) stretched-grid Conformal-Cubic Atmospheric Model (CCAM) at 80-kilometer resolution shows reasonable precipitation simulation in JJA, although Indochina tended to be drier than in the observations (McGregor and Nguyen, 2003). Aldrian et al. (2004a) conducted a number of simulations with the Max-Planck Institute (MPI) regional model for an Indonesian domain, forced by reanalyses and by the ECHAM4 GCM. The model was able to represent the spatial pattern of seasonal rainfall. It was found that a resolution of at least 50 kilometers was required to simulate rainfall seasonality correctly over Sulawesi. The formulation of a coupled regional model improves regional rainfall simulation over the oceans (Aldrian et al., 2004b). Arakawa and Kitoh (2005) demonstrate an accurate simulation of the diurnal cycle of rainfall over Indonesia with an AGCM of 20-kilometer horizontal resolution.

Central Asia and Tibet

Due to the complex topography and the associated mesoscale weather systems of the high-altitude and arid areas, GCMs typically perform poorly over the region. Importantly, the GCMs, and to a lesser extent RCMs, tend to overestimate the precipitation over arid and semi-arid areas in the north (e.g., Small et al., 1999; Gao et al., 2001; Elguindi and Giorgi, 2006).

Over Tibet, the few available RCM simulations generally exhibit improved performance in the simulation of present-day climate compared to GCMs (e.g., Gao et al., 2003a,b; Zhang et al., 2005b). For example, the GCM simulation of Gao et al. (2003a) overestimated the precipitation over the north-western Tibetan Plateau by a factor of five to six, while in an RCM nested in this model, the overestimate was less than a factor of two.

43

This paper does not represent US Government views.