Page:Male relatedness and familiarity are required to modulate male-induced harm to females in Drosophila.pdf/7

This page has been proofread, but needs to be validated.

generations, which allows for selection to continue late in life. By contrast, the IV populations are maintained on a discrete 14-day generation culture cycle in vials at a controlled density of approximately 100 eggs per vial, which prevents selection from acting beyond that time point. This difference in culturing conditions could potentially alter sexual conflict-mediated selection on female ageing in Dahomey versus IV populations. However, there have been no direct tests of this hypothesis. It will be important for future studies to explore, via the fully factorial design applied here, whether relatedness and familiarity among males similarly interact to affect female harm in the IV and other Drosophila populations.

More generally, one implication of these studies is that local relatedness among male competitors may represent a possible modulator of the ´sexual tragedy of the commons´ and population viability. An important avenue of future research, therefore, will be to explore whether the ecology of D. melanogaster across different laboratory and wild populations (e.g. fine-grained population structure) may be more or less conducive to kin-selected sexual cooperation.

Data accessibility. The datasets supporting this article can be accessed at the Oxford University Research Archive: https://doi.org/10.5287/bodleian:mq112gn2P.

Authors' contributions. S.W. and P.C. conceived of the study. S.L.P., P.C. and S.W. designed the study. S.L.P. and E.F. generated the experimental flies. S.L.P. and I.S. collected behavioural data. S.L.P. collected offspring data and carried out the statistical analyses. S.L.P., S.W., P.C. and T.P. drafted the manuscript. All authors gave their final approval for publication.

Competing interests. We have no competing interests.

Funding. S.L.P. is funded by a BBSRC studentship award (BB/J014427/1). S.W. and I.S. are funded by a BBSRC fellowship to S.W. (BB/K014544/1). P.C. is funded by a Ramón y Cajal research fellowship and by Spanish Research Grants (CGL2014-58722-P and CGL2016-81894-ERC) from the Spanish Ministry of Economy and Competitiveness (MINECO). T.P. is funded by a BBSRC-LINK grant with Aviagen Ltd (BB/L009587/1).

Acknowledgements. Thanks are expressed to Ju Morimoto and Eleanor Bath for their assistance in generating the experimental flies, Florian Klimm for assisting in writing a program to randomly assign larvae, George Nicholson, Dan Lunn and Nico Kist for their assistance in the statistical analyses, and to two anonymous reviewers for their constructive suggestions.

References

  1. Parker G. 1979 Sexual selection and sexual conflict. In Sexual selection and reproductive competition in insects (eds MS Blum, NA Blum), pp. 123–166. New York, NY: Academic Press.
  2. Arnqvist G, Rowe L. 2005 Sexual conflict. Princeton, NJ: Princeton University Press.
  3. Parker GA. 2006 Sexual conflict over mating and fertilization: an overview. Phil. Trans. R. Soc. B. 361, 235–259. (doi:10.1098/rstb.2005.1785)
  4. Hardin G. 1968 The tragedy of the commons. Science 162, 1243–1248. (doi:10.1126/science.162.3859.1243)
  5. Rankin DJ, Kokko H. 2006 Sex, death and tragedy. Trends Ecol. Evol. 21, 225–226 (doi:10.1016/j.tree.2006.02.013)
  6. Rankin DJ. 2011 Kin selection and the evolution of sexual conflict. J. Evol. Biol. 24, 71–81. (doi:10.1111/j.1420-9101.2010.02143.x)
  7. Rankin DJ, Dieckmann U, Kokko H. 2011 Sexual conflict and the tragedy of the commons. Am. Nat. 177, 780–791. (doi:10.1086/659947)
  8. Lessells CM. 2005 Why are males bad for females? Models for the evolution of damaging male mating behavior. Am. Nat. 165, S46–S63. (doi:10.1086/429356)
  9. Eldakar OT, Dlugos MJ, Pepper JW, Wilson DS. 2009 Population structure mediates sexual conflict in water striders. Science 326, 816. (doi:10.1126/science.1180183)
  10. Le Galliard JF, Fitze PS, Ferrie`re R, Clobert J. 2005 Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl Acad. Sci. USA 102, 18231–18236. (doi:10.1073/pnas.0505172102)
  11. Wild G, Pizzari T, West SA. 2011 Sexual conflict in viscous populations: the effect of the timing of dispersal. Theor. Popul. Biol. 80, 298–316. (doi:10.1016/j.tpb.2011.09.002)
  12. Pizzari T, Gardner A. 2012 The sociobiology of sex: inclusive fitness consequences of inter-sexual interactions. Phil. Trans. R. Soc. B 367, 2314–2323. (doi:10.1098/rstb.2011.0281)
  13. Pizzari T, Biernaskie JM, Carazo P. 2015 Inclusive fitness and sexual conflict: how population structure can modulate the battle of the sexes. Bioessays 37, 155–166. (doi:10.1002/bies.201400130)
  14. Faria GS, Varela SAM, Gardner A. 2015 Sex-biased dispersal, kin selection and the evolution of sexual conflict. J. Evol. Biol. 28, 1901–1910. (doi:10.1111/jeb.12697)
  15. Taylor PD. 1992 Altruism in viscous populations—an inclusive fitness model. Evol. Ecol. 6, 352–356. (doi:10.1007/BF02270971)
  16. Díaz-Munõz SL, DuVal EH, Krakauer AH, Lacey EA. 2014 Cooperating to compete: altruism, sexual selection and causes of male reproductive cooperation. Anim. Behav. 88, 67–78. (doi:10.1016/j.anbehav.2013.11.008)
  17. Kapranas A, Maher AMD, Griffin CT. 2016 Higher relatedness mitigates mortality in a nematode with lethal male fighting. J. Evol. Biol. 29, 344–351. (doi:10.1111/jeb.12786)
  18. Rosher C, Favati A, Dean R, Løvlie H. 2017 Relatedness and age reduce aggressive male interactions over mating in domestic fowl. Behav. Ecol. 28, 760–766. (doi:10.1093/beheco/arx024)
  19. Tan CKW, Doyle P, Bagshaw E, Richardson DS, Wigby S, Pizzari T. 2017 The contrasting role of male relatedness in different mechanisms of sexual selection in red junglefowl. Evolution 71, 403–420. (doi:10.1111/evo.13145)
  20. Ala-Honkola O, Friman E, Lindström K. 2011 Costsand benefits of polyandry in a placental poeciliid fish Heterandria formosa are in accordance with the parent–offspring conflict theory of placentation. J. Evol. Biol. 24, 2600–2610. (doi:10.1111/j.1420-9101.2011.02383.x)
  21. Łukasiewicz A, Szubert-kruszy A, Radwan J. 2017 Kin selection promotes female productivity and cooperation between the sexes. Sci. Adv. 3, e1602262. (doi:10.1126/sciadv.1602262)
  22. Carazo P, Tan CKW, Allen F, Wigby S, Pizzari T. 2014 Within-group male relatedness reduces harm to females in Drosophila. Nature 505, 672–675 (doi:10.1038/nature12949)
  23. Carazo P, Perry JC, Johnson F, Pizzari T, Wigby S. 2015 Related male Drosophila melanogaster reared together as larvae fight less and sire longer lived daughters. Ecol. Evol. 5, 2787–2797. (doi:10.1002/ece3.1549)
  24. Hollis B, Kawecki TJ, Keller L. 2015 No evidence that within-group male relatedness reduces harm to females in Drosophila. Ecol. Evol. 5, 979–983. (doi:10.1002/ece3.1417)
  25. Chippindale AK, Berggren M, Alpern JHM, Montgomerie R. 2015 Does kin selection moderate sexual conflict in Drosophila? Proc. R. Soc. B 282, 20151417. (doi:10.1098/rspb.2015.1417)
  26. Martin ES, Long TAF. 2015 Are flies kind to kin? The role of intra- and inter-sexual relatedness in mediating reproductive conflict. Proc. R. Soc. B 282, 20151991. (doi:10.1098/rspb.2015.1991)
  27. Stuart RJ. 1991 Kin recognition as a functional concept. Anim. Behav. 41, 1093–1094. (doi:10.1016/S0003-3472(05)80650-5)
  28. Hepper PG. 1986 Kin recognition: functions and mechanisms a review. Biol. Rev. 61, 63–93. (doi:10.1111/j.1469-185X.1986.tb00427.x)
  29. Komdeur J, Hatchwell BJ. 1999 Kin recognition: function and mechanism in avian societies. Trends Ecol. Evol. 14, 237–241. (doi:10.1016/S0169-5347(98)01573-0)