Page:Micrographia - or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon.djvu/337

This page has been proofread, but needs to be validated.
Micrographia.
221

Des Cartes principles by conceiving the Globuls of the third Element to find less and less resistance against that side of them which is downwards, or by a way, which I have further explicated in the Inquisition about Colours, to be from an obliquation of the pulse of light, whence the under[errata 1] part is continually promoted, and consequently refracted towards the perpendicular, which cuts the Orbs at right angles. What the particular Figure of the Curve line, describ'd by this way of light, is, I shall not now stand to examine, especially since there may be so many sorts of it as there may be varieties of the Positions of the intermediat degrees of density and rarity between the bottom and the top of the inflecting Medium.

I could produce many more Examples and Experiments, to illustrate and prove this first Proposition, viz. that there is such a constitution of some bodies as will cause inflection. As not to mention those I have observ'd in Horn, Tortoise-Shell, transparent Gums, and resinous Substances: The veins of Glass, nay, of melted Crystal, found, and much complained of by Glass-grinders, and others, might sufficiently demonstrate the truth of it to any diligent Observator.

But that, I presume, I have by this Example given proof sufficient (viz. ocular demonstration) to evince, that there is such a modulation, or bending of the rayes of light, as I have call'd inflection, differing both from reflection, and refraction (since they are both made in the superficies, this only in the middle); and likewise, that this is able or sufficient to produce the effects I have ascribed to it.

It remains therefore to shew, that there is such a property in the Air, and that it is sufficient to produce all the above mentioned Phænomena, and therefore may be the principal, if not the only cause of them.

First, That there is such a property, may be proved from this, that the parts of the Air are some of them more condens'd, others more rarified, either by the differing heat, or differing pressure it sustains, or by the somewhat heterogeneous vapours interspers'd through it. For as the Air is more or less rarified, so does it more or less refract a ray of light (that comes out of a denser medium) from the perpendicular. This you may find true, if you make tryal of this Experiment.

Take a small Glass-bubble, made in the form of that in the second Figure of the 37. Scheme, and by heating the Glass very hot, and thereby very much rarifying the included Air, or, which is better, by rarifying a small quantity of water, included in it, into vapours, which will expel the most part, if not all the Air, and then sealing up the small neck of it, and letting it cool, you may find, if you place it in a convenient Instrument, that there will be a manifest difference, as to the refraction.

As if in this second Figure you suppose A to represent a small sight or hole, through which the eye looks upon an object, as C, through the Glass-bubble B, and the second sight L; all which remain exactly fixt in their several places, the object C being so cized and placed, that it may just seem to touch the upper and under edge of the hole L: and so all of it be seen through the small Glass-ball of rarified Air; then by

breaking

Errata

  1. Original: whence the ruder was amended to whence the under: detail