Page:Nanostructural Organization of Naturally Occurring Composites Part II.pdf/7

This page has been proofread, but needs to be validated.

7Hermann Ehrlich et al.


intercalated chitosan/layered silicate nanocomposites prepared to develop robust and stable sensors useful for anionic detection in aqueous media as reported on [50, 51]. We suggest that silica-chitin and silica-NAG (-poly NAG) composites could be highly optimized biocompatible structures that would support and organize functional tissues if applied in tissue engineering of bone and cartilage replacements similar to silica-chitosan-based biomaterials [52]. Experiments on biocompatibility of silica-chitin and silicaNAG composites derived in vitro are currently in progress.

4. CONCLUSION

Chitin and poly-N-acetyl glucosamine are well investigated materials of biological origin with wide fields of application in biomedicine because of their unique multifunctional engineering mechanical properties and biocompatibility [53–56]. With respect to polysaccharides, including sponge chitin, it is theoretically possible that inorganic Si binds after the macromolecular structure has been formed. An alternative, more plausible from stereochemical considerations [49], would consist in the incorporation of preformed mono-or disaccharide Si derivatives during the synthesis of the polysaccharide chain. The finding of nanostructured silica-chitin biocomposites as structural scaffolds of glass sponge skeletons introduces a new aspect into the discussion surrounding the chemistry, diversity, and nanolocalization of these materials. Chitin as a template for biomineralization probably belongs to the basic pattern of the Metazoa.

ACKNOWLEDGMENTS

This work was partially supported by a joint RussianGerman program “DAAD-Mikhail Lomonosov.” We thank Professor H. Lichte for the possibility to use the facilities at the Special Electron Microscopy Laboratory for highresolution and holography at Triebenberg, TU Dresden, Germany. The authors are deeply grateful to Mariana Tasso, Heike Meissner, Gert Richter, Axel Mensch, and Ortrud Trommer for helpful technical assistance.

REFERENCES

[1] H. Ehrlich, S. Heinemann, C. Heinemann, et al., “Nanostructiral organization of naturally occuring composites. Part I. Silica-collagen-based biocomposites,” Journal of Nanomaterials. In press.
[2] P. Fratzl, “Biomimetic materials research: what can we really learn from nature’s structural materials?” Journal of the Royal Society, Interface, vol. 4, no. 15, pp. 637–642, 2007.
[3] H. Ehrlich and H. Worch, “Sponges as natural composites: from biomimetic potential to development of new biomaterials,” in Porifera Research-Biodiversity, Innovation & Sustainability, M. R. Custodio, G. Lobo-Hajdu, E. Hajdu, and G. Muricy, Eds., Museu Nacional, Rio de Janeiro, Brasil, 2007.
[4] G. Mayer, “Rigid biological systems as models for synthetic composites,” Science, vol. 310, no. 5751, pp. 1144–1147, 2005.
[5] S. L. Walter, B. D. Flinn, and G. Mayer, “Mechanisms of toughening of a natural rigid composite,” Materials Science and Engineering C, vol. 27, no. 3, pp. 570–574, 2007.
[6] J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, “Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale,” Science, vol. 309, no. 5732, pp. 275–278, 2005.
[7] J. C. Weaver, J. Aizenberg, G. E. Fantner, et al., “Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum ,” Journal of Structural Biology, vol. 158, no. 1, pp. 93–106, 2007.
[8] R. Cuttaneo-Vietti, G. Bavestrello, C. Cerrano, et al., “Optical fibres in an Antarctic sponge,” Nature, vol. 383, no. 6599, pp. 397–398, 1996.
[9] J. Aizenberg, V. C. Sundar, A. D. Yablon, J. C. Weaver, and G. Chen, “Biological glass fibers: correlation between optical and structural properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3358–3363, 2004.
[10] W. E. G. Müller, K. Wendt, C. Geppert, M. Wiens, A. Reiber, and H. C. Schröder, “Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi ,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1149–1155, 2006.
[11] H. C. Schröder, D. Brandt, U. Schloßmacher, et al., “Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine),” Naturwissenschaften, vol. 94, no. 5, pp. 339–359, 2007.
[12] H. Ehrlich and H. Worch, “Collagen, a huge matrix in glasssponge flexible spicules of the meter-long Hyalonema sieboldi,” in Handbook of Biomineralization Vol.1. The Biology of Biominerals Structure Formation, E. Bäuerlein, Ed., Wiley VCH, Weinheim, Germany, 2007.
[13] S. Heinemann, H. Ehrlich, C. Knieb, and T. Hanke, “Biomimetically inspired hybrid materials based on silicified collagen,” International Journal of Materials Research, vol. 98, no. 7, pp. 603–608, 2007.
[14] S. Heinemann, C. Knieb, H. Ehrlich, et al., “A novel biomimetic hybrid material made of silicified collagen: perspectives for bone replacement,” Advanced Engineering Materials, vol. 9, no. 12, pp. 1061–1068, 2007.
[15] M. Sarikaya, H. Fong, N. Sunderland, et al., “Biomimetic model of a sponge-spicular optical fiber-mechanical properties and structure,” Journal of Materials Research, vol. 16, no. 5, pp. 1420–1428, 2001.
[16] H. Ehrlich, A. Ereskovsky, A. L. Drozdov, et al., “A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for the purpose of extraction and examination of the protein matrix,” Russian Journal of Marine Biology, vol. 32, no. 3, pp. 186–193, 2006.
[17] H. Ehrlich, M. Krautter, T. Hanke, et al., “First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera),” Journal of Experimental Zoology Part B, vol. 308B, no. 4, pp. 473–483, 2007.
[18] J. Reitner and D. Mehl, “Early Paleozoic diversification of sponges: new data and evidences,” Geologisch Paläontologische Mitteilungen Innsbrück, vol. 20, pp. 335–347, 1995.
[19] J. P. Botting and N. J. Butterfield, “Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 5, pp. 1554–1559, 2005.
[20] D. F. Travis, C. J. Francois, L. C. Bonar, and M. J. Glimcher, “Comparative studies of the organic matrices of invertebrate mineralized tissues,” Journal of Ultrastructure Research, vol. 18, no. 5-6, pp. 519–550, 1967.