Page:Popular Science Monthly Volume 11.djvu/564

This page has been validated.
546
THE POPULAR SCIENCE MONTHLY.

less fine radial striæ where the smoke has been swept away. These may be seen very well by holding the glass plate up to the light if it has not been too thickly smoked.

The marks thus made are very beautiful and. symmetrical, and it will be found, if the glass be uniformly smoked, that the same-sized drops of the same liquid falling from the same height will produce almost exactly similar marks: while if the height be changed the mark on the lampblack will be somewhat changed; and it is a fair inference, if each drop makes almost exactly the same complicated, symmetrical mark, that the splash of each drop takes place in almost exactly the same way.

The glimpse that may be caught of the drop in the way described is obtained when the drop is really almost stationary, having flattened itself out on the plate, and being on the point of contracting again to its original form.

That a drop if so flattened out will recover itself, is seen on pressing down a drop of mercury with the finger, or a drop of water with a piece of black-lead or other substance to which it does not adhere.

Fig. 6. Fig. 5.

On removing the pressure the drop springs back to its old form; the force which causes this being exerted by the curved surface of the liquid at the edge of the flattened drop, on the liquid within. The flatter the drop becomes the greater is the curvature of the edge, and the greater the corresponding pressure tending to restore it to its original globular form. The extent to which a drop that has fallen on a plate will spread out depends on the velocity with which it strikes the plate, i. e., on the height of fall; so that as long as the drop returns to the globular form the whole phenomenon of the splash may be regarded as an oscillation similar to that of a pendulum; the velocity of the liquid outward being checked, overcome, and finally reversed by the ever-increasing pressure of the curved edge, just as a pendulum has its velocity checked, overcome, and finally reversed, by the action of gravity.

It is only when the height of fall is very great that the liquid flies off in all directions and the splash ceases to be an oscillation; this