Page:Popular Science Monthly Volume 15.djvu/749

This page has been validated.
PROTOPLASM AND LIFE.
729

"Hautschicht," or cortical layer, of these cells. I then suggested that the function of these pseudopodia lay in seizing, in the manner of an Amœba, such alimentary matter as may be found in the contents of the canal, and applying it to the nutrition of the hydroid.

What I had thus suggested with regard to Myriothela has been since proved in certain planarian worms by Metschnikoff,[1] who has seen the cells which line the alimentary canal in these animals act like independent Amœbæ, and ingulf in their protoplasm such solid nutriment as may be contained in the canal. When the planaria was fed with coloring matter these amœboid cells became gorged with the colored particles just as would have happened in an Amœba when similarly fed.

But it is not alone in such loosely aggregated cells as those of the blood, or in the amœboid cells of the alimentary canal, or in such scattered constituents of the tissues as the pigment-cells, or in cells destined for an ultimate state of freedom, as the egg, that there exists an independence. The whole complex organism is a society of cells, in which every individual cell possesses an independence, an autonomy, not at once so obvious as in the blood-cells, but not the least real. With this autonomy of each element there is at the same time a subordination of each to the whole, thus establishing a unity in the entire organism, and a concert and harmony between all the phenomena of its life.

In this society of cells each has its own work to perform, and the life of the organism is made up of the lives of its component cells. Here it is that we find most distinctly expressed the great law of the physiological division of labor. In the lowest organisms, where the whole being consists of a single cell, the performance of all the processes which constitute its life must devolve on the protoplasm of this one cell; but as we pass to more highly organized beings, the work becomes distributed among a multitude of workers. These workers are the cells which now make up the complex organism. The distribution of labor, however, is not a uniform one, and we are not to suppose that the work performed by each cell is but a repetition of that of every other. For the life-processes, which are accumulated in the single cell of the unicellular organism become in the more complex organism differentiated, some being intensified and otherwise modified and allocated to special cells, or to special groups of cells, which we call organs, and whose proper duty is now to take charge of the special processes which have been assigned to them. In all this we have a true division of labor—a division of labor, however, by no means absolute; for the processes which are essential to the life of the cell must still continue common to all the cells of the organism. No cell, however great may be the differentiation of function in the organism,

  1. "Ueber die Verdauungsorgane einiger Süsswasser-Turbellarien," "Zoologischer Anzeiger," December, 1878.