Page:Popular Science Monthly Volume 15.djvu/751

This page has been validated.
PROTOPLASM AND LIFE.
731

to bear on one of these cells, a portion of its protoplasm may be seen in active rotation, flowing up one side of the long, tubular cell and down the other, and sweeping on with it such more solid particles as may become enveloped in its current. In another water-plant, the Vallsnerla spiralis, a similar active rotation of the protoplasm may be seen in the cells of the leaf, where the continuous stream of liquid protoplasm sweeping along the green granules of chlorophyl, and even carrying the globular nucleus with it in its current, presents one of the most beautiful of the many beautiful phenomena which the microscope has revealed to us.

In many other cells with large sap-cavities, such as those which form the stinging hairs of nettles and other kinds of vegetable hairs, the protoplasmic lining of the wall may send off into the sap-cavity projecting ridges and strings, forming an irregular network, along which, under a high power of the microscope, a slow streaming of granules may be witnessed. The form and position of this protoplasmic network undergo constant changes, and the analogy with the changes of form in an Amœba becomes obvious. The external wall of cellulose renders it impossible for the confined protoplasm to emit, like a naked Amœba, pseudopodia from its outer side; but on the inner side there is no obstacle to the extension of the protoplasm, and here the cavity of the cell becomes more or less completely traversed by protoplasmic projections from the wall. These often stretch themselves out in the form of thin filaments, which, meeting with a neighboring one, become fused into it; they show currents of granules streaming along their length, and after a time become withdrawn and disappear. The vegetable cell, in short, with its surrounding wall of cellulose, is in all essential points a closely imprisoned rhizopod.

Further proof that the imprisoned protoplasm has lost by its imprisonment none of its essential irritability, is afforded by the fact that if the transparent cell of a Nitella, one of the simple water-plants just referred to, be touched under the microscope with the point of a blunt needle, its green protoplasm will be seen to recede, under the irritation of the needle, from the cellulose wall. If the cellulose wall of the comparatively large cell which forms the entire plant in a Vaucheria, a unicellular alga very common in shallow ditches, be ruptured under the microscope, its protoplasm will escape, and may then be often seen to throw out pseudopodial projections and exhibit amœboid movements.

Even in the higher plants, without adducing such obvious and well-known instances as those of the sensitive-plant and Venus's flytrap, the irritability of the protoplasm may be easily rendered manifest. There are many herbaceous plants, in which, if the young, succulent stem of a vigorously growing specimen receive a sharp blow, of such a nature, however, as not to bruise its tissues, or in any way wound it, the blow will sometimes be immediately followed by a drooping of the