Page:Popular Science Monthly Volume 23.djvu/385

This page has been proofread, but needs to be validated.

it go twice as fast. I will hang on nine pounds. One now goes exactly three times as fast as the other. I will now put four pounds on the first, and leave the nine pounds on the second: the first goes twice while the second goes three times. If instead of a weight we use electro-magnetic force to control the vibrations of a body, then twice the current produces four times the force; four times the force produces twice the rate; three times the current produces nine times the force; nine times the force produces three times the rate, and so on: or the rate is directly proportional to the current strength. There is on the table a working meter made on this principle. I allow the current that passes through to pass also through a galvanometer of special construction, so that you can tell by the position of a spot of light on a scale the strength of the current. At the present time there is no current; the light is on the zero of the scale, the meter is at rest. I now allow a current to pass from a battery of the new Faure-Sellon-Volckmar cells which the Storage Company have kindly lent me for this occasion. The light moves through one division on the scale, and the meter has started. I will ask you to observe its rate of vibration. I will now double the current; this is indicated by the light moving to the end of the second division on the scale: the meter vibrates twice as fast. Now the current is three times as strong, now four times, and so on. You will observe that the position of the spot of light and the rate of vibration always correspond. Every vibration of the meter corresponds to a definite quantity of electricity, and causes a hand on a dial to move on one step. By looking at the dial, we can see how many vibrations there have been, and therefore how much electricity has passed. Just as the vibrating sticks in the model in time come to rest, so the vibrating part of the meter would in time do the same, if it were not kept going by an impulse automatically given to it when required. Also, just as the vibrating sticks can be timed to one another by sliding weights along them, so the vibrating electric meters can be regulated to one another so that all shall indicate the same value for the same current, by changing the position or weight of the bobs attached to the vibrating arm.

The other meter of this class, Dr. Hopkinson's, depends on the fact that centrifugal force is proportional to the square of the angular velocity. He therefore allows a little motor to drive a shaft faster and faster, until centrifugal force overcomes electro-magnetic attraction, when the action of the motor ceases. The number of turns of the motor is a measure of the quantity of electricity that has passed.

I will now pass on to the measurement of power transmitted by belting. The transmission of power by a strap is familiar to every one in a treadle sewing-machine or an ordinary lathe. The driving force depends on the difference in the tightness of the two sides of the belt, and the power transmitted is equal to this difference multiplied