Page:Popular Science Monthly Volume 6.djvu/219

This page has been validated.
PROFESSOR LOVERING'S ADDRESS.
207

exempt from this liability. But, if, as modern science teaches, the earth lives only by the triple radiation from the sun, then an earlier doom has been written for the earth also. Geology is no longer allowed to cut its garment from the past duration of unlimited extent. The numerical estimates of physical science, with a large margin of uncertainty, assign limits between which alone geology has free play. Whatever tends to reduce or enlarge those limits must be of interest to the geologist as well as to the astronomer.

This is the brilliant career, in electricity, optics, astronomy, and geology, of the little mirror, cradled in the laboratory of Poggendorff, and which has not yet seen its fiftieth birthday.

In making this exhibit of the instrumental appliances of modern physics, I will simply name the polariscope, the stereoscope, and the instruments in photography, and hurry on to the spectroscope.

The steps by which the spectroscope has attained its preëminent rank among the instruments of the physicist and the astronomer were taken at long intervals. A whole century intervened between Newton's experiments with the prism and Wollaston's improvement. The substitution of a long and narrow slit for the round hole in the window-shutter was enough to reveal the presence of the two boldest dark lines in the solar spectrum. Wollaston stood on the threshold of a rich development in science, but neither he nor his compeers were ready for it, and what he saw, novel as it was, attracted little attention. Spectrum analysis, in relation to light itself, began when Frauenhofer published, in 1817, in the memoirs of the Bavarian Academy, an account of his experiments on the direct and reflected rays of the sun, on starlight, and various artificial sources of light, dispersing the rays by prisms of fine Munich glass and then receiving them into a theodolite. Frauenhofer repeated some of his experiments in the presence of the younger Herschel, but for many years he had the field wholly to himself. A paper by Herschel on the colors of artificial flames acquires a new interest from what has been done more recently. Between 1830 and 1860, numerous physicists, among whom are the well-known names of Brewster, Miller, Wheatstone, Powell, Stokes, Gladstone, Becquerel, Masson, Van der Willigen, Plücker, and Angström, were at work upon the facts connected with the emission of light by incandescent bodies and its absorption by gases and vapors. As early as 1830, Simms had placed a lens in front of the prism, with the slit in the focus, and another lens behind the prism to form an image of the slit.

The first hint of that pregnant fact, the reversal of the bright spectrum-bands of flames, came from Foucault in 1849. His experiment was repeated at Paris, in 1850, in the presence of Sir William Thomson. It was reserved for a young physicist of Heidelberg, who was not born until seven years after Frauenhofer laid the foundations, to place the keystone upon the structure on which many hands had