Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/130

This page has been proofread, but needs to be validated.
114
MULTIPLE ALGEBRA.

and Grassmann formed their algebras, although the philosophical mind of the last was not satisfied until he had produced a system unfettered by any spatial relations. It is probably in connection with some of these subjects that the notions of multiple algebra are most widely diaseminated.

Maxwell's Treatise on Electricity and Magnetism has done so much to familiarize students of physics with quaternion notations, that it seems impossible that this subject should ever again be entirely divorced from the methods of multiple algebra.

I wish that I could say as much of astronomy. It is, I think, to be regretted, that the oldest of the scientific applications of mathematics, the most dignified, the most conservative, should keep so far aloof from the youngest of mathematical methods; and standing as I do to-day, by some chance, among astronomers, although not of the guild, I cannot but endeavor to improve the opportunity by expressing my conviction of the advantages which astronomers might gain by employing some of the methods of multiple algebra. A very few of the fundamental notions of a vector analysis, the addition of vectors and what quatemionists would call the scalar part and the vector part of the product of two vectors (which may be defined without the notion of the quaternion),—these three notions with some four fundamental properties relating to them are sufficient to reduce enormously the labor of mastering such subjects as the elementary theory of orbits, the determination of an orbit from three observations, the differential equations which are used in determining the best orbit from an indefinite number of observations by the method of least squares, or those which give the perturbations when the elements are treated as variable. In all these subjects the analytical work is greatly simplified, and it is far easier to find the best form for numerical calculation than by the use of the ordinary analysis.

I may here remark that in its geometrical applications multiple algebra will naturally take one of two principal forms, according as vectors or points are taken as elementary quantities, i.e., according as something having magnitude and direction, or something having magnitude and position at a point, is the fundamental conception. These forms of multiple algebra may be distinguished as vector analysis and point analysis. The former we may call a triple, the latter a quadruple algebra, if we determine the degree of the algebra from the degree of multiplicity of the fundamental conception. The former is included in the latter, since the subtraction of points gives us vectors, and in this way Grassmann's vector analysis is included in his point analysis. Hamilton's system, in which the vector is the fundamental idea, is nevertheless made a quadruple algebra by the addition of ordinary numerical quantities. For practical purposes we