Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/131

This page has been proofread, but needs to be validated.
MULTIPLE ALGEBRA.
115

may regard Hamilton's system as equivalent to Grassmann's algebra of vectors. Such practical equivalence is of course consistent with great differences of notation, and of the point of view from which the subject is regarded.

Perhaps I should add a word in regard to the nature of the problems which require a vector analysis, or the more general form of Grassmann's point analysis. The distinction of the problems is very marked, and corresponds precisely to the distinction familiar to all analysts between problems which are suitable for Cartesian coordinates, and those which are suitable for the use of tetrahedral, or, in plane geometry, triangular coordinates. Thus, in mechanics, kinematics, astronomy, physics, or crystallography, Grassmann's point analysis will rarely be wanted. One might teach these subjects for years by a vector aoalysis, and never perhaps feel the need of any of the notions or notations which are peculiar to the point analysis, precisely as in ordinary algebra one might use the Cartesicui coordinates in teaching these subjects, without any occasion for the use of tetrahedral coordinates. I think of one exception, which, however, confirms the rule. The very important theory of forces acting on a rigid body is much better treated by point analysis than by vector analysis, exactly as in ordinary algebra it is much better treated by tetrahedral coordinates than by Cartesian,—I mean for the purpose of the elegant development of general propositions. A sufficient theory for the purposes of numerical calculations can easily enough be given by any method, and the most familiar to the student is for such practical purposes of course the best. On the other hand, the projective properties of bodies, the relations of collinearity, and similar subjects, seem to demand the point analysis for their adequate treatment.

If I have said that the algebra of vectors is contained in the algebra of points, it does not follow that in a certain sense the algebra of points is not deducible from the algebra of vectors. In mathematics, a part often contains the whole. If we represent points by vectors drawn from a common origin, and then develop those relations between such vectors representing points, which are independent of the position of the origin,—by this simple process we may obtain a large part, possibly all, of an algebra of points. In this way the vector analysis may be made to serve very conveniently for many of those subjects which I have mentioned as suitable for point analysis. The vector analysis, thus enlarged, is hardly to be distinguished from a point analysis, but the treatment of the subject in this way has somewhat of a makeshift character, as distinguished from the unity and simplicity of the subject when developed directly from the idea of something situated at a point.

Of those subjects which have no relations to space, the elementary