This page has been proofread, but needs to be validated.
106

big bang, then there must be enough mass in the universe to produce the required gravitational attraction. Yet only about 10% of this mass has been found to-date [Wilford, 1992c], even including both what has been observed and what has been extrapolated to exist. Imagine the challenge of searching for something when you don’t know what it is and you don’t know where it is. Remarkably, astronomers are finding at least some of this dark matter, by observing galaxies whose motions require gravitational forces far larger than the observed masses could generate.

  • Pick the most efficient method of detection. For example, select a technique that sees the search object but not the surroundings. In picking the most efficient method, consider the effort, time, and money needed to acquire, set up, and employ each method.

Diamond hunter Gavin Lamont discovered a gigantic diamond-bearing kimberlite pipe in Botswana, although the entire exploration region was covered by 160 feet of surface sediments that contained no diamonds. He used one fact, one speculation, and months of perseverance. The fact was that even though diamonds are incredibly rare, they are accompanied by common indicator minerals garnet and ilmenite. Thus one should search for garnet and ilmenite first. His speculation was that the only way garnet and ilmenite could get to the ground surface from 160 feet down would be reworking by deeply burrowing termites. Therefore he ran a search pattern through hundreds of square miles, easily finding each termite mound sticking up from the flatlands, and examining the termite mound for the presence of the dark minerals garnet and ilmenite. When he finally found the indicator minerals, he sank a shaft to what later became a 4.5-million-carat-a-year diamond mine [Heminway, 1983].

  • Before embarking on a major search, try to establish that the object really does exist in the area being searched. For example, do not spend a major effort taking equipment apart if the problem could be elsewhere (e.g., power fluctuations).

A friend of the Mulla Nasrudin found the Mulla crawling around outside at night beneath a lamp post. Of course he asked, “What are you doing?” “Looking for my key”, replied the Mulla. The friend asked, “Where did you lose it?” and the Mulla replied “In my house”. The exasperated friend asked, “Then why are you looking for it here?” The Mulla answered, “Because there is more light here.” [Sufi teaching story, e.g., Shah, 1972]

  • Confirm that you would detect the object if you encountered it. For example, it might be feasible to use an artificial substitute and see if you detect it. Test your detection method at intervals to be sure that it is still working and that it has sufficient sensitivity. Conversely, find out if your test is so sensitive that it gives false positives, i.e. it claims that you have found the object when you have not. False alarms may be acceptable, if you have another test for the object that you can apply at each apparent detection.

On my last oceanographic expedition, we heard an introductory lecture on drilling technology, complete with a 70-pound, 1'-diameter drill bit as a visual aid. After the lecture, two women scientists saw that the drill bit had been forgotten. “Let’s put it in the men’s room and stick a toilet brush in it,” they decided, “No man will ever recognize it.” For more than a week, they were right.