The Story of Evolution
by Joseph McCabe
Chapter XI. The Middle Ages of the Earth
392735The Story of Evolution — Chapter XI. The Middle Ages of the EarthJoseph McCabe

HAI THIS IS GIRISH The story of the earth from the beginning of the Cambrian period to the present day was long ago divided by geologists into four great eras. The periods we have already covered—the Cambrian, Ordovician, Silurian, Devonian, Carboniferous, and Permian—form the Primary or Palaeozoic Era, to which the earlier Archaean rocks were prefixed as a barren and less interesting introduction. The stretch of time on which we now enter, at the close of the Permian, is the Secondary or Mesozoic Era. It will be closed by a fresh upheaval of the earth and disturbance of life-conditions in the Chalk period, and followed by a Tertiary Era, in which the earth will approach its modern aspect. At its close there will be another series of upheavals, culminating in a great Ice-age, and the remaining stretch of the earth's story, in which we live, will form the Quaternary Era.

In point of duration these four eras differ enormously from each other. If the first be conceived as comprising sixteen million years—a very moderate estimate—the second will be found to cover less than eight million years, the third less than three million years, and the fourth, the Age of Man, much less than one million years; while the Archaean Age was probably as long as all these put together. But the division is rather based on certain gaps, or "unconformities," in the geological record; and, although the breaches are now partially filled, we saw that they correspond to certain profound and revolutionary disturbances in the face of the earth. We retain them, therefore, as convenient and logical divisions of the biological as well as the geological chronicle, and, instead of passing from one geological period to another, we may, for the rest of the story, take these three eras as wholes, and devote a few chapters to the chief advances made by living things in each era. The Mesozoic Era will be a protracted reaction between two revolutions: a period of low-lying land, great sea-invasions, and genial climate, between two upheavals of the earth. The Tertiary Era will represent a less sharply defined depression, with genial climate and luxuriant life, between two such upheavals.

The Mesozaic ("middle life") Era may very fitly be described as the Middle Ages of life on the earth. It by no means occupies a central position in the chronicle of life from the point of view of time or antiquity, just as the Middle Ages of Europe are by no means the centre of the chronicle of mankind, but its types of animals and plants are singularly transitional between the extinct ancient and the actual modern types. Life has been lifted to a higher level by the Permian revolution. Then, for some millions of years, the sterner process of selection relaxes, the warm bosom of the earth swarms again with a teeming and varied population, and a rich material is provided for the next great application of drastic selective agencies. To a poet it might seem that nature indulges each succeeding and imperfect type of living thing with a golden age before it is dismissed to make place for the higher.

The Mesozoic opens in the middle of the great revolution described in the last chapter. Its first section, the Triassic period, is at first a mere continuation of the Permian. A few hundred species of animals and hardy plants are scattered over a relatively bleak and inhospitable globe. Then the land begins to sink once more. The seas spread in great arms over the revelled continents, the plant world rejoices in the increasing warmth and moisture, and the animals increase in number and variety. We pass into the Jurassic period under conditions of great geniality. Warm seas are found as far north and south as our present polar regions, and the low-lying fertile lands are covered again with rich, if less gigantic, forests, in which hordes of stupendous animals find ample nourishment. The mammal and the bird are already on the stage, but their warm coats and warm blood offer no advantage in that perennial summer, and they await in obscurity the end of the golden age of the reptiles. At the end of the Jurassic the land begins to rise once more. The warm, shallow seas drain off into the deep oceans, and the moist, swampy lands are dried. The emergence continues throughout the Cretaceous (Chalk) period. Chains of vast mountains rise slowly into the air in many parts of the earth, and a new and comparatively rapid change in the vegetation—comparable to that at the close of the Carboniferous—announces the second great revolution. The Mesozoic closes with the dismissal of the great reptiles and the plants on which they fed, and the earth is prepared for its new monarchs, the flowering plants, the birds, and the mammals.

How far this repeated levelling of the land after its repeated upheavals is due to a real sinking of the crust we cannot as yet determine. The geologist of our time is disposed to restrict these mysterious rises and falls of the crust as much as possible. A much more obvious and intelligible agency has to be considered. The vast upheaval of nearly all parts of the land during the Permian period would naturally lead to a far more vigorous scouring of its surface by the rains and rivers. The higher the land, the more effectively it would be worn down. The cooler summits would condense the moisture, and the rains would sweep more energetically down the slopes of the elevated continents. There would thus be a natural process of levelling as long as the land stood out high above the water-line, but it seems probable that there was also a real sinking of the crust. Such subsidences have been known within historic times.

By the end of the Triassic—a period of at least two million years—the sea had reconquered a vast proportion of the territory wrested from it in the Permian revolution. Most of Europe, west of a line drawn from the tip of Norway to the Black Sea, was under water—generally open sea in the south and centre, and inland seas or lagoons in the west. The invasion of the sea continued, and reached its climax, in the Jurassic period. The greater part of Europe was converted into an archipelago. A small continent stood out in the Baltic region. Large areas remained above the sea-level in Austria, Germany, and France. Ireland, Wales, and much of Scotland were intact, and it is probable that a land bridge still connected the west of Europe with the east of America. Europe generally was a large cluster of islands and ridges, of various sizes, in a semi-tropical sea. Southern Asia was similarly revelled, and it is probable that the seas stretched, with little interruption, from the west of Europe to the Pacific. The southern continent had deep wedges of the sea driven into it. India, New Zealand, and Australia were successively detached from it, and by the end of the Mesozoic it was much as we find it to-day. The Arctic continent (north of Europe) was flooded, and there was a great interior sea in the western part of the North American continent.

This summary account of the levelling process which went on during the Triassic and Jurassic will prepare us to expect a return of warm climate and luxurious life, and this the record abundantly evinces. The enormous expansion of the sea—a great authority, Neumayr, believes that it was the greatest extension of the sea that is known in geology—and lowering of the land would of itself tend to produce this condition, and it may be that the very considerable volcanic activity, of which we find evidence in the Permian and Triassic, had discharged great volumes of carbon-dioxide into the atmosphere.

Whatever the causes were, the earth has returned to paradisiacal conditions. The vast ice-fields have gone, the scanty and scrubby vegetation is replaced by luscious forests of cycads, conifers, and ferns, and warmth-loving animals penetrate to what are now the Arctic and Antarctic regions. Greenland and Spitzbergen are fragments of a continent that then bore a luxuriant growth of ferns and cycads, and housed large reptiles that could not now live thousands of miles south of it. England, and a large part of Europe, was a tranquil blue coral-ocean, the fringes of its islands girt with reefs such as we find now only three thousand miles further south, with vast shoals of Ammonites, sometimes of gigantic size, preying upon its living population or evading its monstrous sharks; while the sunlit lands were covered with graceful, palmlike cycads and early yews and pines and cypresses, and quaint forms of reptiles throve on the warm earth or in the ample swamps, or rushed on outstretched wings through the purer air.

It was an evergreen world, a world, apparently, of perpetual summer. No trace is found until the next period of an alternation of summer and winter—no trees that shed their leaves annually, or show annual rings of growth in the wood—and there is little trace of zones of climate as yet. It is true that the sensitive Ammonites differ in the northern and the southern latitudes, but, as Professor Chamberlin says, it is not clear that the difference points to a diversity of climate. We may conclude that the absence of corals higher than the north of England implies a more temperate climate further north, but what Sir A. Geikie calls (with slight exaggeration) "the almost tropical aspect" of Greenland warns us to be cautious. The climate of the mid-Jurassic was very much warmer and more uniform than the climate of the earth to-day. It was an age of great vital expansion. And into this luxuriant world we shall presently find a fresh period of elevation, disturbance, and cold breaking with momentous evolutionary results. Meantime, we may take a closer look at these interesting inhabitants of the Middle Ages of the earth, before they pass away or are driven, in shrunken regiments, into the shelter of the narrowing tropics.

The principal change in the aspect of the earth, as the cold, arid plains and slopes of the Triassic slowly yield the moist and warm ow-lying lands of the Jurassic, to consists in the character of the vegetation. It is wholly intermediate in its forms between that of the primitive forests and that of the modern world. The great Cryptogams of the Carboniferous world—the giant Club-mosses and their kindred—have been slain by the long period of cold and drought. Smaller Horsetails (sometimes of a great size, but generally of the modern type) and Club-mosses remain, but are not a conspicuous feature in the landscape. On the other hand, there is as yet—apart from the Conifers—no trace of the familiar trees and flowers and grasses of the later world. The vast majority of the plants are of the cycad type. These—now confined to tropical and subtropical regions—with the surviving ferns, the new Conifers, and certain trees of the ginkgo type, form the characteristic Mesozoic vegetation.

A few words in the language of the modern botanist will show how this vegetation harmonises with the story of evolution. Plants are broadly divided into the lower kingdom of the Cryptogams (spore-bearing) and the upper kingdom of the Phanerogams (seed-bearing). As we saw, the Primary Era was predominantly the age of Cryptogams; the later periods witness the rise and supremacy of the Phanerogams. But these in turn are broadly divided into a less advanced group, the Gymnosperms, and a more advanced group, the Angiosperms or flowering plants. And, just as the Primary Era is the age of Cryptogams, the Secondary is the age of Gymnosperms, and the Tertiary (and present) is the age of Angiosperms. Of about 180,000 species of plants in nature to-day more than 100,000 are Angiosperms; yet up to the end of the Jurassic not a single true Angiosperm is found in the geological record.

This is a broad manifestation of evolution, but it is not quite an accurate statement, and its inexactness still more strongly confirms the theory of evolution. Though the Primary Era was predominantly the age of Cryptogams, we saw that a very large number of seed-bearing plants, with very mixed characters, appeared before its close. It thus prepares the way for the cycads and conifers and ginkgoes of the Mesozoic, which we may conceive as evolved from one or other branch of the mixed Carboniferous vegetation. We next find that the Mesozoic is by no means purely an age of Gymnosperms. I do not mean merely that the Angiosperms appear in force before its close, and were probably evolved much earlier. The fact is that the Gymnosperms of the Mesozoic are often of a curiously mixed character, and well illustrate the transition to the Angiosperms, though they may not be their actual ancestors. This will be clearer if we glance in succession at the various types of plant which adorned and enriched the Jurassic world.

The European or American landscape—indeed, the aspect of the earth generally, for there are no pronounced zones of climate—is still utterly different from any that we know to-day. No grass carpets the plains; none of the flowers or trees with which we are familiar, except conifers, are found in any region. Ferns grow in great abundance, and have now reached many of the forms with which we are acquainted. Thickets of bracken spread over the plains; clumps of Royal ferns and Hartstongues spring up in moister parts. The trees are conifers, cycads, and trees akin to the ginkgo, or Maidenhair Tree, of modern Japan. Cypresses, yews, firs, and araucarias (the Monkey Puzzle group) grow everywhere, though the species are more primitive than those of today. The broad, fan-like leaves and plum-like fruit of the ginkgoales, of which the temple-gardens of Japan have religiously preserved a solitary descendant, are found in the most distant regions. But the most frequent and characteristic tree of the Jurassic landscape is the cycad.

The cycads—the botanist would say Cycadophyta or Cycadales, to mark them off from the cycads of modern times—formed a third of the whole Jurassic vegetation, while to-day they number only about a hundred species in 180,000, and are confined to warm latitudes. All over the earth, from the Arctic to the Antarctic, their palm-like foliage showered from the top of their generally short stems in the Jurassic. But the most interesting point about them is that a very large branch of them (the Bennettiteae) went far beyond the modern Gymnosperm in their flowers and fruit, and approached the Angiosperms. Their fructifications "rivalled the largest flowers of the present day in structure and modelling" (Scott), and possibly already gave spots of sober colour to the monotonous primitive landscape. On the other hand, they approached the ferns so much more closely than modern cycads do that it is often impossible to say whether Jurassic remains must be classed as ferns or cycads.

We have here, therefore, a most interesting evolutionary group. The botanist finds even more difficulty than the zoologist in drawing up the pedigrees of his plants, but the general features of the larger groups which he finds in succession in the chronicle of the earth point very decisively to evolution. The seed-bearing ferns of the Coal-forest point upward to the later stage, and downward to a common origin with the ordinary spore-bearing ferns. Some of them are "altogether of a cycadean type" (Scott) in respect of the seed. On the other hand, the Bennettiteae of the Jurassic have the mixed characters of ferns, cycads, and flowering plants, and thus, in their turn, point downward to a lower ancestry and upward to the next great stage in plant-development. It is not suggested that the seed-ferns we know evolved into the cycads we know, and these in turn into our flowering plants. It is enough for the student of evolution to see in them so many stages in the evolution of plants up to the Angiosperm level. The gaps between the various groups are less rigid than scientific men used to think.

Taller than the cycads, firmer in the structure of the wood, and destined to survive in thousands of species when the cycads would be reduced to a hundred, were the pines and yews and other conifers of the Jurassic landscape. We saw them first appearing, in the stunted Walchias and Voltzias, during the severe conditions of the Permian period. Like the birds and mammals they await the coming of a fresh period of cold to give them a decided superiority over the cycads. Botanists look for their ancestors in some form related to the Cordaites of the Coal-forest. The ginkgo trees seem to be even more closely related to the Cordaites, and evolved from an early and generalised branch of that group. The Cordaites, we may recall, more or less united in one tree the characters of the conifer (in their wood) and the cycad (in their fruit).

So much for the evolutionary aspect of the Jurassic vegetation in itself. Slender as the connecting links are, it points clearly enough to a selection of higher types during the Permian revolution from the varied mass of the Carboniferous flora, and it offers in turn a singularly varied and rich group from which a fresh selection may choose yet higher types. We turn now to consider the animal population which, directly or indirectly, fed upon it, and grew with its growth. To the reptiles, the birds, and the mammals, we must devote special chapters. Here we may briefly survey the less conspicuous animals of the Mesozoic Epoch.

The insects would be one of the chief classes to benefit by the renewed luxuriance of the vegetation. The Hymenopters (butterflies) have not yet appeared. They will, naturally, come with the flowers in the next great phase of organic life. But all the other orders of insects are represented, and many of our modern genera are fully evolved. The giant insects of the Coal-forest, with their mixed patriarchal features, have given place to more definite types. Swarms of dragon-flies, may-flies, termites (with wings), crickets, and cockroaches, may be gathered from the preserved remains. The beetles (Coleopters) have come on the scene in the Triassic, and prospered exceedingly. In some strata three-fourths of the insects are beetles, and as we find that many of them are wood-eaters, we are not surprised. Flies (Dipters) and ants (Hymenopters) also are found, and, although it is useless to expect to find the intermediate forms of such frail creatures, the record is of some evolutionary interest. The ants are all winged. Apparently there is as yet none of the remarkable division of labour which we find in the ants to-day, and we may trust that some later period of change may throw light on its origin.

Just as the growth of the forests—for the Mesozoic vegetation has formed immense coal-beds in many parts of the world, even in Yorkshire and Scotland—explains this great development of the insects, they would in their turn supply a rich diet to the smaller land animals and flying animals of the time. We shall see this presently. Let us first glance at the advances among the inhabitants of the seas.

The most important and stimulating event in the seas is the arrival of the Ammonite. One branch of the early shell-fish, it will be remembered, retained the head of its naked ancestor, and lived at the open mouth of its shell, thus giving birth to the Cephalopods. The first form was a long, straight, tapering shell, sometimes several feet long. In the course of time new forms with curved shells appeared, and began to displace the straight-shelled. Then Cephalopods with close-coiled shells, like the nautilus, came, and—such a shell being an obvious advantage—displaced the curved shells. In the Permian, we saw, a new and more advanced type of the coiled-shell animal, the Ammonite, made its appearance, and in the Triassic and Jurassic it becomes the ogre or tyrant of the invertebrate world. Sometimes an inch or less in diameter, it often attained a width of three feet or more across the shell, at the aperture of which would be a monstrous and voracious mouth.

The Ammonites are not merely interesting as extinct monsters of the earth's Middle Ages, and stimulating terrors of the deep to the animals on which they fed. They have an especial interest for the evolutionist. The successive chambers which the animal adds, as it grows, to the habitation of its youth, leave the earlier chambers intact. By removing them in succession in the adult form we find an illustration of the evolution of the elaborate shell of the Jurassic Ammonite. It is an admirable testimony to the validity of the embryonic law we have often quoted—that the young animal is apt to reproduce the past stages of its ancestry—that the order of the building of the shell in the late Ammonite corresponds to the order we trace in its development in the geological chronicle. About a thousand species of Ammonites were developed in the Mesozoic, and none survived the Mesozoic. Like the Trilobites of the Primary Era, like the contemporary great reptiles on land, the Ammonites were an abortive growth, enjoying their hour of supremacy until sterner conditions bade them depart. The pretty nautilus is the only survivor to-day of the vast Mesozoic population of coiled-shell Cephalopods.

A rival to the Ammonite appeared in the Triassic seas, a formidable forerunner of the cuttle-fish type of Cephalopod. The animal now boldly discards the protecting and confining shell, or spreads over the outside of it, and becomes a "shell-fish" with the shell inside. The octopus of our own time has advanced still further, and become the most powerful of the invertebrates. The Belemnite, as the Mesozoic cuttle-fish is called, attained so large a size that the internal bone, or pen (the part generally preserved), is sometimes two feet in length. The ink-bags of the Belemnite also are sometimes preserved, and we see how it could balk a pursuer by darkening the waters. It was a compensating advantage for the loss of the shell.

In all the other classes of aquatic animals we find corresponding advances. In the remaining Molluscs the higher or more effective types are displacing the older. It is interesting to note that the oyster is fully developed, and has a very large kindred, in the Mesozoic seas. Among the Brachiopods the higher sloping-shoulder type displaces the square-shoulder shells. In the Crustacea the Trilobites and Eurypterids have entirely disappeared; prawns and lobsters abound, and the earliest crab makes its appearance in the English Jurassic rocks. This sudden arrival of a short-tailed Crustacean surprises us less when we learn that the crab has a long tail in its embryonic form, but the actual line of its descent is not clear. Among the Echinoderms we find that the Cystids and Blastoids have gone, and the sea-lilies reach their climax in beauty and organisation, to dwindle and almost disappear in the last part of the Mesozoic. One Jurassic sea-lily was found to have 600,000 distinct ossicles in its petrified frame. The free-moving Echinoderms are now in the ascendant, the sea-urchins being especially abundant. The Corals are, as we saw, extremely abundant, and a higher type (the Hexacoralla) is superseding the earlier and lower (Tetracoralla).

Finally, we find a continuous and conspicuous advance among the fishes. At the close of the Triassic and during the Jurassic they seem to undergo profound and comparatively rapid changes. The reason will, perhaps, be apparent in the next chapter, when we describe the gigantic reptiles which feed on them in the lakes and shore-waters. A greater terror than the shark had appeared in their environment. The Ganoids and Dipneusts dwindle, and give birth to their few modern representatives. The sharks with crushing teeth diminish in number, and the sharp-toothed modern shark attains the supremacy in its class, and evolves into forms far more terrible than any that we know to-day. Skates and rays of a more or less modern type, and ancestral gar-pikes and sturgeons, enter the arena. But the most interesting new departure is the first appearance, in the Jurassic, of bony-framed fishes (Teleosts). Their superiority in organisation soon makes itself felt, and they enter upon the rapid evolution which will, by the next period, give them the first place in the fish world.

Over the whole Mesozoic world, therefore, we find advance and the promise of greater advance. The Permian stress has selected the fittest types to survive from the older order; the Jurassic luxuriance is permitting a fresh and varied expansion of life, in preparation for the next great annihilation of the less fit and selection of the more fit. Life pauses before another leap. The Mesozoic earth—to apply to it the phrase which a geologist has given to its opening phase—welcomes the coming and speeds the parting guest. In the depths of the ocean a new movement is preparing, but we have yet to study the highest forms of Mesozoic life before we come to the Cretaceous disturbances.